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I. INTRODUCTION

Helical antennas are generally constructed with a uniform diameter

[Ref. 1] or a tapered diameter [Refs. 2, 3]. The helical gain characteristics

over a wide bandwidth are not readily available in the literature, The pur-

pose of this report is to describe the characteristics of a non-uniform helix

and to demonstrate how the bandwidth of a conventional uniform (constant

diameter) helix can be extended by the use of non-uniform helical structures.

The non-uniform helix consists of multiple uniform-diameter helical sections

that are joined together by short, tapered transitions. With a non-uniform

helix, it is possible to shape the gain vs frequency response to provide

either enhanced gain at selected frequencies or a near-flat gain response

over a broad bandwidth.

The non-uniform helix antenna was developed for operation in the 290

to 400 M.%z band (- 1.4:1 frequency ratio) with optimum gain characteristics

I'at the low-frequency.end. A conventional helix, which provides an effective

operating bandwidth of approximately 25%, could not meet the desired gain

performance characteristics. This report describes the results of 3/8-scale

(773 to 1067 MHz) experiments made on a variety of helix antenna configura-

tions including uniform, tapered, and non-uniform diameters.
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11. GENERAL DESCRIPTION

Most of the experimental helices were wound with thin copper strips

0. 468-in. wide. The plane of the strip (wide dimension of strip) was wound

orthogonal to -he helix axis, similar to a "slinky". Helices wound with

round conductors or with metall.ic tapes (wound such that the plane of the

tape is parallel to the helix axis) yielded similar results as experimentally

verified by the authors. The "strip" approach was chosen because of me-

chanical convenience and ease of construction. It was found that an accurate

helix could be made by properly joining a series of loops. The mean cir-

cumference of each loop was made equal to the length of one helical turn or,

equivalently, the mean diameter of each loop was made equal to VDM + (S/TT

where DM is the mean diameter of the helix and S is the spacing between turns

(p.\tch). In the tapered portions of the helix the average taper diameter of

each turn was selected for DM. Styrofoam forms were cut to the desired

mean helix diameter and slitted with a razor blade to the desired helical

path. Each loop was joined end-to-end (butt joint) and soldered together

with an overlapping strap. The loops are then inserted into the slitted foam.

A constant pitch spacing of 3.2 in. was selected, although a constant

angular pitch provides similar electrical characteristics as verified by ex-

perinments (by the authors). The helix was backed by a cavity, 11. 25-in.

diameter X 3. 75-in. high, which is a reasonable physical size, to reduce

backlobe radiation and enhance the forward gain. A metallic center tube

(I. 125-in. diameter), which provided mechanical support, was used in all

the helix models. The total length of the helix = NS + LF, where N = number

of helix turns at a spacing S, and LF = feed strap length (the distance above

the cavity plate where the first turn of the helix starts).

-7-
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I1. VSWR CHARACTERISTICS

The VSWR of all the antennas discussed herein is less than 1.5:1 over

the test frequency range from 650 to 1100 MHz (except for the uniform helix)

when a microstrip matching transformer is used. The transformer is placed

on the cavity surface and it is tapered from 50 ohm at the coax input port to

approximately 140 ohms at the helix feed point.

The solid-line curve of Fig. I is for a 18-turn uniform helix with a

4. 59-in. diameter aad a 12. 50 pitch angle (3. 2-in. spacing between turns).

By tapering the last two turns to a 2.98-in. diameter and maintaining a 3.2-in.

spacing between turns, the dashed-line curve shows a considerable improvement

in VSWR. The resonant region (C/ X > 1. 1) found in the uniform helix disap-

peared in the tapered-end helix. The VSWR characteristics for all the non-

uniform helices in the subsequent discussions are similar to that of the tapered-

end helix curve.

The characteristic change in VSWR by tapering the end also holds for

a shorter helix as shown in Fig. 2. The solid-line curve is for a 7-turn uni-

form helix with a 5.28 in. diameter and a 10.920 pitch angle (3. 2-in. spacing

between turns). By adding two additional turns and tapering the helix diameter

to 4. 13-in. diameter (with the same 3.2-in. spacing between turns), a signifi-

cant reductioa in VSWR over a wide frequency band was observed as shown by

the dashed curve. Also, it is noted that the low frequency characteristics are

essentially unchanged with a cutoff at -- 534 MHz, corresponding to C/ X - 0. 75,

where C is the circumference of the 5.28-in. diameter helix. The low fre-

quency cutoff characteristics agree well with theoretical predictions [Refs. 1,
- 6].

-9-
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IV. PATTERNS AND GAIN

A. UNIFORM [IELIX

Figure 3 shows the gain and axial ratio characteristics of a 18-turn

uniformly wound helix, 4. 59-in. diameter. By defining the bandwidth as

the 2 dB points (from gain maximum) of the gain curve, the frequency ratio

becomes 970/770 or 1.26:1. Also, note that for C/X < I ýhe gain slope

varies approximately as f 4 , where f = frequency. Representative patterns

using a rotating linearly polarized source ark shown in Fig. 4. The half-

power beamwidths (HPBW) and the gain-beamwidth products (GO 2, where

9 = HPBW) are shown in Fig. 5. Note that the HPBW is approximately in-

versely proportional to f2 for C/ X < 1. 1 while the gain is proportional to

f for C/ <1. 0. (It should be pointed out that Kraus [Ref. 1] shows that
3 3/Z

the gain slope varies as f and the HPBW varies as f.) Patterns are

shown for only one principal plane as the measurements indicated that the

patterns have good symmetry in azimuth. The HPBW in two orthogonal

planes are generally within + 0. 250.

B. TAPERED-END HELIX

By tapering the last two turns from 4. 59-in. to 2. 98-in. diameter,

while maintaining the same overall length, an improvement in axial ratio

[Ref. 71 was observed as compared to a completely uniform helix. Com-

parison between Fig. 3 and Fig. 6 reveals that the axial ratio characteristics

of the tapered-end helix are improved and with some increase in gain at the

high end of the frequency band but the peak gain is reduced slightly. Figure

7 shows the radiation patterns for the tapered-end helix. The same frequen-

cies are chosen so that the patterns can be compared with those of the uniform

helix of Fig. 4. Except for the axial ratio, the patterns are generally similar

to those of the uniform helix. For interest, the HPBW and gain-beamwidth

products of the 18-turn tapered-end helix are plotted in Fig. 8.

-13-
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It should be pointed out that the primary purpose of the present study

was to optimize the gain of the helical antenna in the lower portion of the

773 to 1067 MHz band without substantial gain degradation in the upper por-

tion of the band. Thus, the measurements performed for all the helices

investigated in the present study cover this frequency range, which may

exceed the theoretical limits for an axial mode uniform helix [Refs. 1, 4-6].

For a uniform helix with a 4. 59-in. diameter and a 12. 5 pitch angle, reason-

able antenna performance can be expected from 650 to 1025 MHz, which cor-

respond approximately to 0. 8 < C/A < 1. 125. Beyond this frequency range

severe pattern distortion and gain degradation would result as can be evident

from Figures 3, 4, 6 and 7.

C. CONTINUOUSLY TAPERED HELIX

A continuously tapered helix (literally known as conical helix) with a

constant pitch spacing of 3.2 in. was tested. 1lhe helix consists of 17.64 turns

7 with a 5. 32-in. diameter at the base and 2. 98-in. diameter at the top as shown

in the sketch of Fig. 9. The peak gain is slightly lower than the uniform helix

but the axial ratio and sidelol. characteristics are improved as can be seen

from Figures 9 and 10. The HPBW and gain-beamwidth product a,- shown

in Fig. 11. It is interesting to note that the high and low frequency limits are

approximately determined by the mean circumference of the helix. The gain

peaks at a frequency where the mean circumference is approximately 1. 05 X.

However, the gain-frequency response broadens considerably with substantial

increase in gain at the high frequency end. For example, Fig. 9 shows the

gain v.ries + I dB from 820 to 1120 MHz, a 1. 37:1 frequency ratio compared

with 1. Z6:l for a uniform helix.

D. QUASI- TAPER ~4

As mentioned previously, the purpose of the present study wAs to develop

a helical anteun capable of oper&tiUo from 773., to 1067 MHz with optimum gain

characteristics in the lower portion of the band. The' uniform helix and the ta-

pered-end hs4Ix wo$e foono a4m of nm.tiag the gain-bandwidth re-

.bLb'2 . :•
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quirements. The continuously tapered helix provided broader frequency

coverage with increased gain at the high frequency end, but the gain-band-

width was still less than desired. In this section, the characteristics of a

non-unifcrm or quasi-taper helix are discussed.

A non-uniform helix can be made in various forms. It may be con-

structed with two or more uniform helix Lections of different diameters or

a combination of uniform and tapered sections. Figure 12 shows a typical

non-uniformn helix consisting of principally two uniform-diameter sections -

5. 28 and 4. 13 inches. The helix is described as a 7-turn helix (5. 28 D) +

Z 2-turn taper (5.28 D to 4. 13 D) + 6.64-turn (4.13 D) + 2-turn end taper

(4. 13 D to Z. 98 D), A constant pitch spacing of 3. 2-in. was maintained in

all four helical sections. During the experimental phase a parametric study

,• made by varying the number of turns, the diameters of the helices, and

the lengths of the tapered transition region. It was found that an antenna can

be synthesized to yield a specified gain-frequency response.

/ Figure 13 illustrates the gain response for the non-uniform helix con-

figuration of Fig. 12. This helix was optimized as desired over the low fre-

quency region, with a gain of 14. 7 + 0. 4 dB from 773 to 900 MHz and re -

mained relatively flat (14.05 + 0.25 dB) from 900 to 1067 MHz. The gain

is constant within + I dB over a frequency ratio f min = 1.55

(710 to 1100 MHz) as compared to 1.26 for a uniform helix. The axial ratio

* 1is < 1 dB. The beam shape and sidelobe characteristics are considerably

improved over those of a uniform helix as illustrated in Fig. 14. It is inter-

esting to note that the high frequency cutoff is not limited by the larger, 5.28-

in. diameter helical section (C/ X % 1.55 at 1100 MHz) but rather by the

smaller, 4. 13-in. diameter helical section (C / X 1.21 at 1100 MHz). The

HPBW and GO2 plots are depicted in Fig. 15. Note that the beamwidth re-

mains relatively constant, 330 + 30 over the 773 to 1067 MHz test frequency

range.
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I ~Another example of a non-.uniform helix is shown in Fig. 16. This

helix was constructed hy tapering the top 10. 64 turns of the helix of Fig. 12,
which results in a helix consisting of a uniform section (5. 28-in, diameter)

I plus a tapered section from 5.28 to 2.98-in, diameter. As shown in Fig. 16,I the + 1. 1 dB gain bandwidth is wider than the non-uniform helix of Fig. 13,

but the gain at the high frequency end iai lower.

...... ...
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V. CONCLUSIONS

The uniqueness of a non-uniform helix antenna has been demonstrated.

Such an approach yields wider bandwidths in gain, pattern, and axial ratio

as compared to the conventional uniform-diameter helix. The non-uniform

helix can also provide a means to synthesize an antenna to attain a specified

gain-frequency response. A continuously tapered diameter helix does not have

this flexibility nor the bandwidth of the non-uniform (quasi-taper) helix. The

following table provides a comparison of the + I dB gain bandwidth for the

various helical antennas:

Frequency Range with Frequency Ratio
Type of Helix + I dB Gain Variation ~rnax / min~

Uniform 770 - 970 MHz 1. 26:1

Tapered-End 770 - 980 MHz 1. 27:1

Continuous Taper 820 - 1120 MHz 1. 37:1

Quasi-Taper 710 - 1100 MHz 1. 55:1

I---~ra a-,_-,_
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